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Abstract:  Earthquakes are one of the most unpredictable natural hazards but recently short-lead-time Earthquake Early 
Warning Systems (EEWS) have become practical with a system operating in Japan and another planned for operation in 
California in the next year or two. A few seconds to a minute or so of early warning is achievable. For example, if 
appropriate, an early warning can be broadcast to enhance the effectiveness of evacuations, water and gas supplies can be 
temporarily cut off, and other more advanced engineering applications may also be developed. Due to the limited warning 
time and the uncertainty of the information from an EEWS, applications that require real-time human decision-making are 
not practical. This motivates recent research to develop a robust automated rapid decision-making procedure for 
mitigation actions. A rational procedure is to initiate a potential loss-reduction action if, based on the incoming 
information from an EEWS, the expected loss from taking no action is greater than the expected loss from taking the 
mitigation action. To estimate the expected loss of a predicted event, it is proposed to use the recently developed PEER 
performance-based earthquake engineering methodology. 

 
 
1.  INTRODUCTION 
 

Due to the high uncertainty of the stress and strength 
distributions within the tectonic plates on Earth, earthquakes 
are one of the most unpredictable natural hazards. Accurate 
prediction of when an earthquake will happen is still not 
possible, but the concept of earthquake early warning can be 
achieved because of the rapid development of computing 
power and network communication. Earthquake Early 
Warning Systems (EEWS) have been operating in several 
different regions. Japan has a long history of earthquake 
monitoring: Urgent Earthquake Detection and Alarm 
System (UrEDAS) of the Japan Railway Group is one of the 
first applications of EEWS and now most regions in Japan 
are covered by a public warning broadcast network operated 
by the Japan Meteorological Agency (JMA) (Allen et al. 
2009b, Doi 2000, Yamazaki and Meguro and Noda 1998). 
In Mexico, warnings are issued to the general public as well. 
In Taiwan, Istanbul and Bucharest, warnings are released to 
one or more users outside the research community (Allen et 
al. 2009b). Currently, an EEWS, called the California 
Integrated Seismic Network (CISN) ShakeAlert System, is 
also under testing in California, USA.  

Early warning systems are usually based on P-wave 
detection that exploits the slower transmission velocity of 
S-waves, the main destructive wave, relative to electronic 
signals and P-waves. Comparing to other natural hazard 
early warning systems, the main challenge of EEWS is the 
extremely short lead time, defined as the time elapsing 

between the moment when the occurrence of a catastrophic 
shaking event at a given location is known to be reasonably 
certain to occur and the moment it actually occurs (Gasparini 
et al. 2007). Therefore, it is necessary to develop an 
Automated Decision-making System (ADS), which can 
make fast rational decisions based on the information from 
an EEWS. Here, we use expected economic loss as a basis 
for rational decision-making, and the Pacific Earthquake 
Engineering Research Center (PEER) Performance-Based 
Earthquake Engineering (PBEE) methodology (Porter 
2003) is used for seismic loss estimation during the decision 
process. However, due to the complexity of the 
methodology, such a decision process suffers from long 
computation times. In order to obtain a fast ADS framework, 
the concept of Action Function and Surrogate Model are 
utilized in this paper. Combining all these ideas, a complete 
ADS framework is presented. 
 
 
2.  BACKGROUND 
 
2.1  Brief Overview of EEWS in California, USA 

The CISN ShakeAlert System, as currently planned, 
combines the outputs of three early warning systems each 
based on a different theory: τc-Pd on-site algorithm, 
Earthquake Alarms Systems (ElarmS), and Virtual 
Seismologist (V-S) (see Fig.1). The τc-Pd on-site algorithm is 
based on observations from a single sensor with two key 
parameters: period parameter τc and high-pass filtered 



displacement amplitude Pd. Vertical components of velocity 
and/or displacement data within the first three seconds 
window of P-waveforms is used to determine both 
parameters (Bose et al. 2009). On the other hand, ElarmS 
and V-S are regional network-based EEWS. ElarmS's 
earthquake location estimation is mainly based on a grid 
search to minimize arrival time residuals when there are 
more than 2 sensors triggered in the network. Its magnitude 
estimation relies on the amplitude and frequency content of 
the detected P-wave. Acceleration, velocity, displacement 
and predominant period (Allen and Kanamori 2003) are 
continuously determined from the vertical component of 
P-waves from all stations (Allen et al. 2009a). The V-S 
algorithm is based on a Bayesian method, which combines 
prior information with a likelihood function to narrow down 
the uncertainties. The V-S location estimation uses Voronoi 
Cells with a probabilistic approach. Its magnitude estimation 
relies on an attenuation model that is based on P-wave and 
S-wave envelopes (Cua and Heaton 2007). The likelihood 
function is formulated in terms of the attenuation model, 
while prior information, such as network topology, station 
health status, regional hazard maps, earthquake forecasts, 
etc., may be utilized to construct the prior probability density 
function (PDF). The PDF for the earthquake magnitude is 
then found by combining both likelihood function and prior 
PDF using Bayes' Theorem (Cua et al. 2009).  

 
All three systems receive data from the same CISN 

seismic network. Once a station is triggered within the 
network, each system will run its own algorithm to produce 
PDFs of earthquake magnitude and location estimation 
based on the received data signals. Then, all results will be 
integrated in a centralized module, called the Decision 
Module (Fig.1), which will produce a PDF for earthquake 
magnitude and location estimates based on the PDFs from 
all three systems. 
 
2.2  Importance of ADS for Applications of EEWS 

A few seconds to a minute of early warning can provide 
significant benefits to society. For example, through 
broadcasting an early warning of an earthquake, the 
efficiency of evacuation of at-risk structures or hazardous 
locations can be enhanced. Also, an automated action can be 

taken to mitigate the impending earthquake’s impact on 
society, such as temporarily cutting off water and gas 
supplies. However, we believe that the true power of EEWS 
will only be achieved through more sophisticated 
engineering applications, which in many cases will involve 
mitigation actions that have significant resulting costs, 
including significant downtime losses caused by interference 
with normal operations. The decision of whether to activate 
such a mitigation action is a complicated tradeoff problem 
which, if time allowed, would best be done by human 
decision-making. Unfortunately, due to the limited warning 
time and the uncertainty in the predictions from EEWS, 
applications that involve human decision-making are not 
practical. Therefore, it is important to develop a 
decision-making system that can make rational decisions 
given uncertain predictions, as well as to make fast enough 
decisions in order to maximize available lead time for 
responding to the warning from the EEWS. This motivates 
the research presented here to develop a general framework 
of ADS. By using ADS, the utility of EEWS may be 
extended to cover a broader range of engineering 
applications. Hence, the impact of future large-scale 
earthquakes to society can be mitigated.   
 
 
3.  ADS FRAMEWORK 
 

A decision is usually made between available choices 
by balancing different tradeoffs from the consequences of 
the choices. For EEWS applications, the automated system 
must choose whether to take mitigation actions or not based 
on a pre-determined criterion. In the simplest situation, the 
alternatives are To Take Action or Not To Take Action. 
Taking an action often leads to some kind of interruption to 
the operation of the facility, business or society, while not 
taking an action induces a risk of hazardous losses. To 
compare possibly disparate consequences, they need to be 
converted into a single metric, called here a Decision 
Variable (DV). Once we have a consistent metric for 
tradeoff comparisons, a rational decision-making procedure 
can be based on comparing the expected values of the DV, 
conditional on the EEWS data, for the two cases: action 
taken and action not taken. The decision criterion can be 
specified mathematically: 
 
If smaller values of the chosen metric DV are preferred (i.e. 
it measures a negative/harmful event, such as economic loss 
or structural damage):  

!"#$  !"#$%&  !"      !![!"|!(!)] ≥ !![!"|!(!)]  (1) 
If larger values of the chosen metric DV are preferred (i.e. it 
measures a positive/beneficial event, such as economic 
savings or structural damage avoidances):  

!"#$  !"#$%&  !"      !![!"|!(!)] ≤ !![!"|!(!)]  (2) 
 
where:  
!! ! ! :!"#$%&$'  !"#$%  !"  !  !"#$%  !  !"#  !"#$  "!" 
!(!):!"#"  !"#$  !!"#  !"  !  !"#$%&'#  !"  !"#$  (!) 
!:!  !"  !  ;         !:!"#$%&  !"#  !"#$%  ;         !:!"#$%&  !"#$% 

Figure 1  Structure of CISN Shake Alert System 



3.1  Calculation of the Expected Values 
Depending on the complexity of the mitigation actions 

in an EEWS application, the calculation of expected DV 
values may be difficult. In order to illustrate the complexity 
of the problem, a commonly used DV, economic loss, is 
chosen. Economic loss is a very suitable metric in many 
cases because it is able to quantify different types of losses. 
It is also the DV in the PEER PBEE methodology, as shown 
in Fig.2. 

 
In this figure, M and R are the magnitude and 

site-to-event distance of the incipient earthquake; IM is the 
ground shaking intensity measure; EDP is a vector of 
engineering demand parameters, and DM is a damage state 
measure for all the vulnerable components in the structure. 
Typical probability models for each analysis stage can be 
found, for example, in Goulet et al. (2007). 

Using the PBEE methodology, the expected economic 
loss (denoted as DV in the following) can be calculated with 
the integral form as shown below (Goulet et al. 2007): 

!! !" ! ! = !"!! !" !" !! !" !"# …   _  
!! !"# !" ! !" !,! ! !,! ! ! …   _  
!"#!!"!!"#!!"!"!#              (3) 

Here, pa(x|y) denotes the PDF of x given y for case “a”. 
Once all the PDFs are obtained from the models shown in 
Fig.2, the expected loss for both cases A and A are found. 
Then, a decision can be made based on (1) or (2). 

Even though there is an explicit expression for 
calculating Ea[DV|D(t)], there remains an important 
challenge for practical usage. Since it is not possible to 
analytically evaluate the integral for most practical 
applications, a numerical integration scheme that may 
require heavy computing power is necessary. As a result, the 
real-time decision-making process may not be fast enough 
for EEWS purpose. To solve this problem, the concepts of 
Action Function (AF) and Surrogate Model are introduced. 
 
3.2  Action Function and Surrogate Model 

In order to shorten the computational time for real-time 
decision-making, most parts of the expected loss calculation 
may be pre-calculated and stored in a computationally 
efficient form. This can be done by introducing the Action 
Function and a surrogate model. Let us first re-write (3) in a 
more compact form: 

!! !" ! ! = !! !" !,! !(!,!|!(!))!"!# 

where 

!! !" !,! = !"!! !" !" !! !" !"# … 

!! !"# !" ! !" !,! !"#!!"!!"#!!" 

is to be pre-computed. Define the Action Function (AF) by: 

!" = !! !" !,! − !! !" !,!        (4) 

then from (1) and (2), the new form of the decision criterion 
becomes: 
 
If smaller values of the chosen metric DV are preferred:  

!"#$  !"#$%&  !"  !"#  !"#$  !"      ![!"|!(!)] ≥ 0  (5) 
If larger values of the chosen metric DV are preferred:  

!"#$  !"#$%&  !"  !"#  !"#$  !"      ![!"|!(!)] ≤ 0  (6) 

where ! !" ! ! = !" !,! ! !,! ! ! !"!# 

Note that AF in (4) can be pre-determined from the four 
probability models shown in Fig.2 because it is not related to 
real-time information from the EEWS. Therefore, all of the 
integrals giving AF can be pre-calculated so that AF(M,R) 
can be approximated by a surrogate model, thereby 
increasing the efficiency of calculating E[AF|D(t)]. It is 
expected that the EEWS in California will quantify the 
uncertainty in the predicted magnitude and location 
estimates by a Gaussian PDF p(M,R|D(t)), so we have 
chosen to use Gaussian radial kernel functions as a basis for 
a surrogate model for AF. Since both AF(M,R) and 
p(M,R|D(t)) have a Gaussian form, their product also has a 
Gaussian form and thus its integral can be written in an 
analytical form. The surrogate model regression scheme is 
chosen to be the relevance vector machine (RVM) because 
of its ability to provide a sparse and accurate regression 
model (Tipping 2001 and 2004, Tipping and Faul 2003, 
Bishop 2006). As a result, an efficient analytical form for 
E[AF|D(t)] can be obtained that significantly speeds up the 
real-time decision-making process. 

 
3.3  ADS Framework Summary 

Let us consider a simple EEWS application that 
contains only one mitigation action on a target 
structure/system. First, based on the PEER PBEE 
methodology, the Action Function is pre-calculated and 
approximated by the RVM using a Gaussian radial kernel 
basis. Next, as the EEWS starts to feed in earthquake 
estimates to ADS, E[AF|D(t)] is rapidly calculated as 
described above. An automated decision is then made based 
on (5) or (6) depending on the chosen DV, as well as the 
action time constraint: 

Take back-up action or no action when tleft < 0 

where tleft  = tEEWS – tADS – tAct 
 tEEWS = remaining lead time from EEWS 
 tADS = average decision-making time delay 
 tAct = time required to complete action 
  
 The above time constraint checks if the remaining time 
is enough for completing the target mitigation action. If not, 

Figure 2  Information flow of PBEE-based EEWS (Grasso, 
Beck and Manfredi 2007) 



then either no action is taken or, if there exists one, the 
back-up action is taken which is not as effective as the 
principal mitigation action but that can be implemented in 
sufficient time. Fig.3 shows a summary of the structure of 
the ADS framework. For more complicated applications, 
such as multiple mitigation actions, this framework can be 
extended. 

 
 
4.  CONCLUSION AND FUTURE WORK 
 

The benefits and feasibility of EEWS is getting better 
appreciated throughout the world. It is expected that there 
will be one operating in California in a year or two. In order 
to maximize the benefits of EEWS, a fast ADS is essential to 
tackle the very short lead times. However, the whole process 
of rational decision-making requires a complicated model 
analysis and long computational times in general. Therefore, 
the only way to make it practical is to break up the 
computations so that many can be done prior to 
implementing ADS at a structure or facility. From the 
moment that EEWS releases warning information, the three 
main steps to achieve are performing the ground motion 
prediction at a chosen site, the response prediction for the 
target structure/system, and the loss/damage prediction. 
Since all three steps do not involve information from the 
EEWS, these can be done ahead of time and then 
approximated with a robust Bayesian surrogate model using 
the RVM. Combining the concepts of Action Function and 
the surrogate model, we can develop a fast ADS framework. 
The next step in our research is to investigate the framework 
for various case studies using past-earthquake data. We are 
currently doing so, but there remain some key challenges to 
apply the ADS framework. One of them is that it is difficult 
to quantify the benefit of a mitigation action. 
Over-estimating the benefit will increase the probability of 
taking a mitigation action when it should not have been done, 
while under-estimating will increase the probability of not 
acting when it is appropriate to do so. More research will be 
done on these kind of practical issues. 
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